

Materials Imaging and Dynamics Workshop: Early Science at MID

Jan 26-27, 2015

MID team:A. Madsen, J. Hallmann, T. Roth, W. Lu (also TU Berlin),G. Ansaldi, A. Schmidt, B. Kist (also TU Hamburg-Harburg)

Monday, 26 January 2015

13:30 14:00 14:30 15:00	Welcome and status of MID instrument MID beam parameters and optics MID sample environment and optical laser Discussion	A. Madsen T. Roth J. Hallmann	European XFEL European XFEL European XFEL
15:30-16:00	Coffee Break		
16:00 16:40	XFEL science with nano-beams Correlations in space and time	C. Schroer C. Gutt	DESY and Univ. Hamburg Univ. Siegen
Tuesday, 27	/ January 2015		
9:00 9:40	Ultrafast XPCS Ultrafast pump-probe CXDI	G. Grübel I. Robinson	DESY University College London
10:20-10:40	Coffee Break		
10:40 11:20 12:00	Ultrafast melting of colloidal crystals observed in pump-probe experiment at LCLS Ideas for microfluidics experiments at MID AGIPD: A 2d pixel detector for XFEL.EU	I. Vartaniants S. Köster H. Graafsma	DESY Univ. Göttingen DESY
12:40-14:00	Lunch Break		
14:00 14:40 15:20	New opportunities for 0.1-meV-resolution IXS at high-repetition-rate IXS for studies of collective dynamics: from glass forming systems to proteins	Y. Shvyd'ko A. Sokolov G. Monaco	Argonne National Laboratory Univ. Tennessee Trento University
16:00-16:20	Coffee Break		The on versity
16:20 17:00	Ultrafast scattering exp. in materials science Femtosecond protein dynamics using split-delay line crystallography	P. Gaal J. J. van Thor	HZ Berlin & Univ. Hamburg Imperial College London
17:40	Discussion and Close Out		

- ²⁰⁰⁹: 1st MID workshop (Oct. 2009)
- 2011: Lead scientist hired, Advisory and Review Team (ART) established
- 2011: Publication of Conceptual Design Report (CDR)
- 2012: Engineering collaboration with ESRF
- 2012: 2nd MID workshop (Dec. 2012)
- 2013: Publication of Technical Design Report (TDR)
- 2014: First 3D instrument models ready, first Call-for-Tender published

4

- 2009: 1st MID workshop (Oct. 2009)
- 2011: Lead scientist hired, Advisory and Review Team (ART) established
- 2011: Publication of Conceptual Design Report (CDR)
- 2012: Engineering collaboration with ESRF
- 2012: 2nd MID workshop (Dec. 2012)
- 2013: Publication of Technical Design Report (TDR)
- 2014: First 3D instrument models ready, first Call-for-Tender published
- 2015: 3rd MID workshop, all 3D models ready, all major CfTs out
- 2016: Reception of components, technical commissioning, installation
- 2017: Installation, first lasing, commissioning with beam, and early science2018: User operation

The Materials Imaging and Dynamics (MID) instrument aims at the investigation of nanosized **structure** and nanoscale **dynamics** using **coherent radiation**. Applications to a **wide range of materials** from hard to soft condensed matter and biological structures are envisaged

(1st MID workshop, Oct 2009 @ ESRF, Grenoble)

http://www.xfel.eu/documents/technical_documents/

Advisory and Review Team (ART): G. Grübel, T. Salditt, G. Ruocco, J. Hastings, H. F. Poulsen, I. Robinson

Early Science at MID Workshop, Jan 26-27, 2015

XFEL Seeding at SASE-2 from early on? YES!

- Self seeding concept (Geloni, Kocharyan, Saldin) using wake monochromators will be implemented at SASE-2
- Two seeding chicanes allow reducing the heat load on the diamond mono; high-rep rate operation within reach
- Commissioning of MID with SASE beam; seeding in a 2nd step but hopefully available from early on
- Chicanes also helpful for high harmonic lasing (>25 keV, future development...)

Typical gain: factor 100 in spectral brightness due to seeding and tapering $I \sim 7x10^{12}$ ph/pulse in 10⁻⁴ BW @ 250 pC and 9 keV

Full specification parameters

- 8, 12.5, 14, or 17.5 GeV electron energy
- X-ray energy: 5 25 keV, maybe higher (harmonic lasing)
- up to 10¹² ph/pulse in pink SASE beam (20-1000 pC)
- pulse duration: down to a few fs
- up to: 4.5 MHz in a 600 μ s train \rightarrow 2700 pulses/train with 220 ns spacing
- 10 trains/s \rightarrow 27000 pulses/s (max)
- Self-seeding, pulse on demand, tapering, two-color
- Pink SASE beam (10⁻³ bw) or Si(220) or Si(111) monochromator

Beamsize: $\sim 1 - 100 \mu m$, nanofocus option

Versatile **Optical laser** system, synchronized to X-rays, timing diagnostics

- X-ray split delay line, 0-800 ps delay \pm 3 fs, 5-10 keV
- Possibility for windowless operation

Standard sample environments, goniometer, scanner, SAXS/WAXS setup, Up to 8 m sample-detector distance at $2\theta = 55 \text{ deg}$

November 2011

Early Science at MID Workshop, Jan 26-27, 2015

XFEL MID Tunnel (SASE 2)

Aerial view of construction site, Schenefeld, July 2014

XFEL Underground Experimental Hall

Early Science at MID Workshop, Jan 26-27, 2015

XFEL MID beamline overview

Not shown:

last 25 m in experimental hall

MCP at 303m (fine tuning of SASE)

Distribution mirror(s) at 390m and 395m (MID on central branch)

Beam loss monitors, PES

XFEL Schematic view of MID in exp. hall

Engineering collaboration with ESRF initiated in 2013

Aim: co-designing together with MID team of

differential pumping

sample chamber

long, movable detector arm (SAXS, WAXS)

detector stand/detector integration

Differential pumping section

Side-view, exp. chamber and long arm

Diff. pump section out for tender

Finalize 3D models of chamber/arm/detector stand by summer 2015

A. Madsen

Early Science at MID Workshop, Jan 26-27, 2015

detector: ~200 mm

European Split-Delay Line (SDL) (FEL

BMBF Verbundforschung Grant Collaboration TU-Berlin (Eisebitt) and XFEL (Madsen) Construction cost + 2 year post doc position (W. Lu)

Aim of the SDL:

to enable modification of the photon pulse pattern ($\Delta t < 220$ ns)

Bundesministerium für Bildung und Forschung

XFEL Hard X-Ray SDL Concept

XFEL Inclined beams from split-delay line

21

4 m mirror-sample distance, $2\alpha_i = 0.4 \text{ deg}$

 α_i even larger with coating

Separation of two beams at detector

Two images on AGIPD detector:

s at detector letector: 2nd pattern 1st pattern

0.8

0.6

0.

0.2

Reflectivity

Early Science at MID Worl Simulations: W. Lu, I. Agapov, G. Geloni

8992 8994 8996 8998 9000 9002 9004 9006 9008

Energy [eV]

1.3 eV

8996 8997 8998 8999 9000 9001 9002 9003 9004 9005

Energy [eV]

22

berin

XFEL Split-Delay Line Simulations

Spectrum output pulses

L Branch

650

700

750

850

800

900

6E4

5E4

4E4

3E4

2E4

1E4

0

550

600

Int. [a.u.]

Time structure

Same energy: Thin beam splitter Low intensity (~1.1%) Constant Int ratio

Bundesministerium

für Bilduna

und Forschung

Small energy shift (0.6 eV): 3x thicker beam splitter Higher intensity (~3.5%) Fluctuating Int ratio

Simulations: W. Lu, I. Agapov, G. Geloni

Energy [eV]

Bundesministerium für Bildung und Forschung

Simulation work will continue to address the throughput and intensity jitter in the self-seeded case **XFEL MID Laboratory for Technical Commissioning**

Hera South Lab

8 cm deep recess in concrete floor to prepare

Work starts 1 March, by G. Pilloni (20 years experience from ESRF/ILL with such floors)

European Suggested Beam Parameters for 1st Lasing and XFEL Commissioning

27

Start-up beam parameters

17.5 GeV electron energy, 40 mm magnetic period X-ray energy: 8.3 keV (10 mm gap)

maybe advantageous to start at 14 mm gap \rightarrow ~15 keV

Early Science at MID Workshop, Jan 26-27, 2015

European Suggested Beam Parameters for 1st Lasing and XFEL Commissioning

Start-up beam parameters

17.5 GeV electron energy, 40 mm magnetic period X-ray energy: 8.3 keV (10 mm gap) maybe advantageous to start at 14 mm gap $\rightarrow \sim 15$ keV SASE, 500 pC bunch charge $\rightarrow \sim 10^{12}$ ph/pulse pulse duration ~ 40 fs 100 kHz in a 600 μ s train \rightarrow 60 pulses/train with 10 μ s spacing Beamsize: $\sim 1 - 100 \,\mu\text{m}$, Pink SASE beam (10⁻³ bw) First lasing by SASE-2 undulator: April 2017 First experiments at MID: Aug 2017

Full TDR performance (machine and instrument): 2018

XFEL Commissioning phase. Rough outline

- 14 weeks counted from 1^{st} lasing (15 Apr 1 Aug, 2017)
- Expected 2 weeks of beamtime (max) during that period
- Preferably delivered in 12h shifts i.e. maximum 28 shifts for commissioning
- 1st goal: Commissioning of essential beam transport, diagnostics, instrument components, detectors, DAQ and control systems,...
- ^{2nd} goal: Characterization of beam parameters: spectrum, intensity, coherence, stability,...
- 3rd goal: 1 or 2 demonstration-type experiments

European **XFEL** (Early Science, in progress...)

- Commissioning of MID ends in Aug 2017
- ~1000/3 h (max) user operation of SASE-2 in 2017

MID and HED need to share the beam time available at SASE-2

Establish Early Science Program for remainder of 2017

- 1000/6 = 167 h = 14 shifts (2-3 experiments)
- Addressed in a call for Early Science proposals
- Interested groups competing for beamtime OR we organize in a few larger collaborations to conduct first experiments
- Hopefully this WS will trigger some discussions...

Early Science likely to continue into 2018

XFEL Early Science parameters, from Aug 2017

Early science parameters (guesstimate):

X-ray energy ~**8.3 - 15 keV**,

up to 10¹² ph/pulse in pink beam

pulse duration: down to a few fs

min. **100 kHz** in a 600 μ s train \rightarrow 60 pulses/train with 10 μ s spacing 10 trains/s

Beamsize: $\sim 1 - 100 \mu m$, maybe nanofocus option

Pink SASE beam (10-3 bw) or Si(220)/Si(111) monochromator

Possibility for windowless operation

Standard sample environments, goniometer, scanner, SAXS/WAXS setup AGIPD detector

Up to 8m sample-detector distance at 2θ=55deg Down to ~20 cm sample-detector distance, less maybe possible Optical laser system, 800 nm, not fully commissioned...

Steady State Operation Plans European (full specs, from 2018) FEL

Concept

- Beamtime proposals, peer-review, 2 allocation rounds/year (?)
- Typical 5 day slots; separated by machine maintenance day(s)
- Split day in two 12 hrs shifts, e.g. 10 am 10 pm
- 12 h instr. operation and 12 h data analysis and/or minor exp. changes
- Change of setup on machine days only (e.g. Mon-Tue)
- Major modifications/installations during shutdown weeks

Annual operation of the facility

4800 hrs accelerator operation for generation of x-rays

- → Peer-reviewed proposals [4000 hrs]
- → Internal activities [800 hrs]
 - Maintenance
 - R&D program & management contingency
- Total amount of user experiments
 - 12000 hrs user time by operation of three instruments in parallel
 - ~200 user experiments / year (5 day slots)
 - ~33 user experiments/year per instrument