# Meeting of the XPCS working group at the MID workshop Oct 28/29 in Grenoble

- 23 participants
- 3 presentations
  - B. Sepiol: Atomic diffusion by XPCS
  - A. Madsen: Considerations for XPCS at the XFEL
  - H. Sinn: XPCS from water

Discussion about MID-station related issues

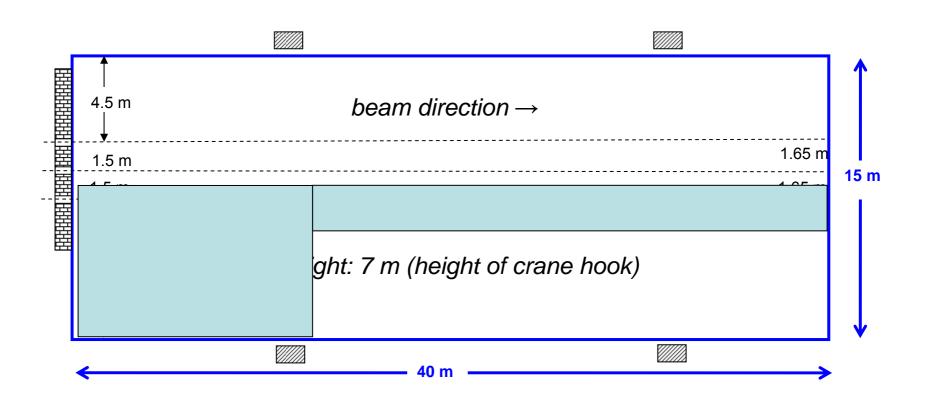
## Source parameters

- Photon energy
  - minimum energy changeable on a week to week time scale (down to 6 keV)
  - use harmonics and larger gaps up to 36 keV
- Pulse pattern
  - considered sub 200 ns bunch spacing via delay generation in the gun
  - interest in 20 to 30 Hz Operation
- Pulse length
  - interest in sub 100 fs pulses (beam damage)
  - presently no interest in < 1 fs,</li>
  - some interest in longer pulses
- Polarization
  - vertical (use afterburner, waveplate)

#### **Beamline**

- Monochromaticity
  - $-\Delta E/E = 10^{-3}, 10^{-4}, 10^{-5}$  (matches by split and delay line)
- Spot size
  - focused, variable from 25 μm down to 1 μm diameter
  - unfocused with slits
- Diagnostics
  - beam intensity pulse-to pulse
  - beam position "
  - pulse length "
  - higher harmonics "
  - speckle visibility
     non destructive, pulse-to pulse

#### **Detectors**


- Three types of experiments considered
  - WAXS up to 60°
  - $-SAXS \pm 0.6^{\circ}$
- WAXS dynamics
  - low count rate experiments
  - 4 µrad angular resolution
  - needs sufficient (10 m) transverse floor space
  - limited dynamic range
  - as many frames as possible
  - 10<sup>8</sup> pixels
- single-shot large q experiments
  - higher count rates higher dynamic range
  - focusing -> 40 µrad angular resolution
  - more limited no. of frames (some experiments may use the full frame rate)

    XPCS @ MID workgroup

#### **Detectors**

- SAXS
  - 4 µrad angular resolution
  - long hutch in forward direction
  - high dynamic range
  - as many frames as possible
- input from detector group needed
  - tradeoffs between pixel size, storage, dynamic range
- masking option needs to be studied

## SASE 1: floor plan experimental stations



March 27, 2008

## Sample environment

- variable energy split and delay
- liquid jet
- diffractometer
- cooling/heating
- external fields
  - B, pressure
- pump laser
- THz
- interest in special samples (active/toxic)