

Area detector developments for CDI and XPCS experiments

MID-Workshop Oct. 2009 ESRF - Grenoble

H. Graafsma (WP75 leader; AGIPD project leader) 28-Oct-2009

Introduction and history

- Challenges and conflicting requirements
- The LPD-project
- The DSSC-project
- The AGIPD-project
- HORUS and science simulations
- Summary and fuel for discussion

XFEL Introduction and History

- 3
- 2006: TDR including a chapter on detector needs
- X-ray Area detectors identified as main task (largest projects, longest lead times, etc.)
- Summer 2006: call for EoI to build and deliver 2D Xray detectors
- End 2007 two accepted: LPD and AGIPD (HPAD)
- 2008 LSDD revised to DSSC and accepted
- Radiation damage and "plasma effect" as separate projects.

17th July 2006: 46 pages; covering 5 areas

6 Eols received; different consortia and technologies

3 Eols selected to develop full proposal

Call by the:

European Project Team for the X-ray Free-Electron Laser

for:

Expressions of Interest

to:

Develop and Deliver Large Area Pixellated X-ray Detectors.

Deadline: 30 September 2006 http://xfel.desy.de/xfelhomepage

1

XFEL Requirements For CI as in the call for Eols

	SPI	CDI	XPCS
E (keV)	12.4	0.8-12	6-15 (0.25-3.1)
ΔE/E	No	No	No
QE	>0.8	>0.8	>0.8
Rad Tol	2 10 ¹⁵	2 10 ¹⁶	2 10 ¹⁴
Total Size (deg)	120	120	0.2 (1.2)
Pixel size	0.5 mrad	0.1 mrad	4 μrad
# pixels	4k x 4k	20k x 20k	1k x 1k
tiling		See text	
Local Rate (ph/pixel/pulse)	10 ⁴	10 ⁵	10 ³
Global Rate (ph/pulse)	10 ⁷	10 ⁷	10 ⁶
Timing	10 Hz	5 MHz	5 MHz
Flat Field	1%	1%	1 %
Dark Current	<1 X	<1 X	< 1 X
Readout Noise	<1 X	<1 X	< 1 X
Linearity	1%	1%	1 %
PSF	<1 pixel	<1 pixel	< 1 pixel
Lag	10 ⁻³	7 10 ⁻⁵	10 ⁻³
Vacuum	Yes	Yes	No
Other			

Electron bunch trains; up to 3000 bunches in 600 μ sec, repeated 10 times per second. Producing 100 fsec X-ray pulses (up to 30 000 bunches per second).

XFEL Some Requirements and Specifications

Requirements: •1k x 1k (4k x 4k) pixels •"no noise" •10⁴ ph/pixel/pulse •Few 100 images/train

Consequences: •Integration detectors •Low noise •In-pixel frame storage •Multiple gains or •Non-linear gain

Large Pixel Detector (LPD)

Area detector developments for CDI and XPCS experiments

Depfet Sensor with Signal Compression (DSSC)

Adaptive Gain Integrating Pixel Detector (AGIPD)

XFEL The Large Pixel Detector (LPD) Project (STFC)

Multi-Gain Concept

- Dynamic Range Compression required
- Experience with calorimetry at CERN
- Relaxes ADC requirements
- Fits with CMOS complexity

Threefold analogue pipeline On-chip ADC

XFEL The Large Pixel Detector (LPD) Project (STFC)

- Sensor tile detail (exploded view)
 - Hidden wire bonds permit 'edge-to-edge' sensors
 - Sensor bias communicated via ASC and interposer

10

ASSOCIATION

28-Oct-2009, H. Graafsma, MID-Workshop; ESRF-Grenoble

XFEL The Large Pixel Detector (LPD) Project (STFC)

Super modules:

- 8 x 2 tiles
- (256 x 256 pixels)

Area detector developments for CDI and XPCS experiments DSSC - DEPMOS Sensor with Signal Compression (MPI-HLL)

- DEPFET per pixel
- Very low noise (good for soft X-rays)
- non linear gain (good for dynamic range)
- per pixel ADC

European

digital storage pipeline

Hexagonal pixels 200µm pitch

- combines DEPFET
- with small area drift detector
 (L. Strüder (SCale)able)

- MPI-HLL, Munich
- Universität Heidelberg
- Universität Siegen
- Politechnico di Milano
- Università di Bergamo
- DESY, Hamburg

Area detector developments for CDI and XPCS experiments **DSSC - DEPMOS Sensor with Signal** European **Compression** (MPI-HLL)

XFEL AGIPD - Adaptive Gain Integrating Pixel Detector (DESY)

Basic parameters

- 200 μm x 200 μm pixels
- 5 MHz framing speed
- Single photon sensitivity at 12keV
- 2 x 10⁴ dynamic range, using 3 switched gains
- 200-400 images storage depth
- 128 x 256 monolithic tiles
- Flat detector

The AGIPD consortium:

- PSI/SLS -Villingen: chip design; interconnect and module assembly
- Universität Bonn: chip design
- Universität Hamburg:
- DESY-Hamburg:

AGIPD

radiation damage tests, "charge explosion" studies; and sensor design

chip design, interface and control electronics, mechanics, cooling; overall coordination

HELMHOLTZ

_ AGIPD - Adaptive Gain Integrating Pixel Detector (DESY)

Concept

European

- wide dynamic input range
- multiple (3) scaled feedback capacitors
- reduced ADC resolution (10 bit instead of 12bit)
- analogue + analogue encoded (2 bit) pipeline

Overview of the readout amplifier

Area detector developments for CDI and XPCS experiments

We DO filter the analogue signal!

- low pass filter realized with limited rise time of preamp (limited by 200ns bunch spacing)
- high pass filter with double correlated sampling

Overview of the chip test board

Preliminary data from the measurements

Area detector developments for CDI and XPCS experiments

- The gain switching is tested with on chip current source.
- Linearity is good. Quantitative results are not yet available.
- Have had problems understanding the interface between the chip and the ADC (solved now).

Area detector developments for CDI and XPCS experiments

European AGIPD - Adaptive Gain Integrating Pixel Detector **XFEL** (DESY)

XFEL AGIPD02

Proof-of-Principle "Small Scale Prototype"

- 16 × 16 Pixels
- Adaptive Gain Switching
- Analogue Storage for 100 samples/pixel
 - Based on DGNCAPs
 - Jual LPPFET (thin oxide) on hot side
 - NFET (thin oxide) at gnd plate to suppress charge injection
- Shift Register based control circuitry
 - Has to be replaced with a decoder based solution for the final chip to enhance trigger/veto capabilities

21

Area detector developments for CDI and XPCS experiments

European AGIPD Adaptive Gain Integrating Pixel Detector **XFEL** (DESY)

22

ASSOCIATION

The PILATUS 6M of the SLS@PSI

Prototypes expected beginning 2010

AGIPD mechanics will be based on the Pilatus XFS **2x4 (8)** Chips per Module.

- ~78 x 39 mm² (XFS)
- ~**50 x 27 mm**² (AGIPD)

Pilatus XFS

Module

XFEL Why develop HORUS: a simulation tool ?

- How do we know the system performance before building the detector ?
- How can we get a good dialogue between application scientists and detector scientists ?
- How to determine the best compromises between scientific wishes and technological limitations for each application ?

HORUS: both a detector development tool and a science simulation tool.

Simulation of the detector Performances (G. Potdevin) The code is built on a modular structure

HORUS

European

Noise budget analysis: False hits

Contributions:

European

- Sensor Leakage. If assuming
 - 100nA/cm³ so 1pA per pixel
 - 10µA per pixel (surface current)
 - ⇒ ~ 100 electrons /pixel/picture
- Amplifier noise

 <u>150 electrons /pixel/picture</u>

 5 σ ie. Luxury
 <u>Noise_{Analogue_Pipeline} < 300 electrons</u>

 Analog pipeline storage

 No number so far...

 So for *1750 electrons signal*

 5 σ ie. Luxury

 <u>Noise_{Analogue_Pipeline} < 300 electrons</u>

 Moise_{Analogue_Pipeline} < 460 electrons
 - ⇔4.6/195*3300
 - ⇔ <u>77 electrons</u>

Area detector developments for CDI and XPCS experiments

Noise budget analysis: Signal fluctuations

European

In photons unit (for electrons @12keV, multiply by 3300)

At low Intensities, Sensor noise dominates

Noise is dominated by

- Limited stopping power
- To a certain extend contribution of
- Charge sharing
- Parallax
- Electronics noise (ASIC + ADC)

EuropeanXPCS requirements:XFELCase of masked pixels

Loose the ability to get peak shape

Area detector developments for CDI and XPCS experiments

XPCS requirements: Case of masked pixels

- Experimental data: g2 function, as function of slits opening Data taken on colloidal sample at ID10A (ESRF)
- Speckles: ~40μm

Bigger pixels improve the statistics, but diminish the contrast

29

XFEL How to find the best compromises ?

Many conflicting parameters:

- Pixel size versus number of frames
- Pixel size versus dynamic range
- Pixel size versus radiation hardness
- Speed versus noise

This is a surface in multi-dimensional space:

- Where do you want to sit ?
- Likely two different spots for CDI and XPCS !
- How far are they apart ?
- Dedicated version for each ?

XFEL Where do we go ?

- CDI seems to be ok with 200 micron pixels (0.1 mrad = 200 micron at 2000 mm)
- CDI needs dynamic range
- CDI wants as many frames as possible
- XPCS wants 4 microrad =160 micron at 40 m; 200 micron at 40 m = 5 microrad. Is this acceptable ?
- Is 160 micron pixels at a pitch of 200 micron acceptable (=masking)?
- XPCS needs limited dynamic range (single gain)
- XPCS needs limited number of frames
- Is a separate AGIPD with smaller pixels an option (a question of €)?

Prototype testing early 2010

But let's discuss tomorrow

