

The Coherent X-ray Imaging (CXI) Instrument at LCLS

Sébastien Boutet

SLAC National Accelerator Laboratory October 28, 2009

- LCLS
- Front-end optics
- Coherent X-ray Imaging (CXI) Instrument
 - Hutch
 - Diagnostics
 - Optical System
 - Sample Environment
 - Detector
- Summary

CXI Capabilities

- CXI instrument not only designed for biological imaging
 - Suitable for imaging any object in forward scattering
 - Not suitable for Bragg geometry
 - XPP, XCS instruments at LCLS can be used for that
- Other techniques compatible with CXI
 - SAXS / WAXS
 - Protein crystallography
 - Nanocrystal studies
 - Solution scattering

LCLS Source

LCLS energy range (fundamental) : 800 – 8265 eV 3rd harmonic up to 24.9 keV (1% of the fundamental) Repetition rate: 120 Hz

Parameter	Value	Value	Value	Value	Value	Units
Photon energy	24795	8265	6000	4000	2000	eV
Wavelength	0.05	0.15	0.21	0.31	0.62	nm
Source size (FWHM)	60	60	67	73	78	μm
CXI Hutch distance from undulator exit	385.5	385.5	385.5	385.5	385.5	meters
Source divergence (FWHM)	0.73	1.1	1.34	1.89	3.47	µrad
Pulse duration	~70	~70	~70	~70	~70	fsec
Number of photons	1.7E+10	1.7E+12	2.7E+12	<i>4E+12</i>	8E+12	photons

- Soft X-ray Offset Mirror System (SOMS) selects 800-2000 eV range for soft X-ray line
- Hard X-ray Offset Mirror System (HOMS) reflects up to 25 keV.
- 385 mm clear aperture mirrors \rightarrow <70% transmission at 2 keV and >98% at 8.3 keV
- Offset mirror systems separate FEL beam from spontaneous background and removes high harmonics
- CXI instrument uses the hard x-ray branch
 - ~3-25 keV

Measured unfocused AMO beam

CXI Instrument at LCLS MID Workshop, ESRF, October 28 2009

Sébastien Boutet sboutet@slac.stanford.edu

LCLS Instruments

Insert compact 0.1 micron system in empty drift space between 1 micron KB mirrors and focal plane

CXI Instrument at LCLS MID Workshop, ESRF, October 28 2009 Sébastien Boutet sboutet@slac.stanford.edu

Diagnostics and Common Optics

XRT # FEH Hutch 5 Х

Guard Slits Diagnostics Photon Shutter Attenuators Pulse Picker Focusing Lenses Reference Laser Guard Slits Diagnostics Guard Slits

1 µm KB Mirrors

Diagnostics

Guard Slits

0.1 µm KB Mirrors 0.1 µm Sample Environment Particle Injector Ion TOF-MS Detector Stage Guard Slits Focusing Lenses Diagnostics 1 µm Sample Environment Particle Injector Ion TOF-MS Detector Stage

Wavefront Monitor Beam Dump

Requirement	Device		
Remove X-ray beam halo	X-ray Guard Slits		
Tailor X-ray intensity	Attenuators		
Tailor X-ray repetition rate	Pulse Picker		
Characterize X-ray pulse intensity	Intensity Monitor		
Characterize X-ray spatial profile	Profile Monitor		
Characterize X-ray focus	Wavefront Monitor		
Tailor focal spot size to the sample	X-ray Focusing Lenses		

CXI Reference Laser

Ħ XRT ŀ FEH Hutch 5

Guard Slits Diagnostics Photon Shutter Attenuators Pulse Picker Focusing Lenses Reference Laser Guard Slits Diagnostics Guard Slits 1 µm KB Mirrors Diagnostics Guard Slits

0.1 µm KB Mirrors 0.1 µm Sample Environment Particle Injector Ion TOF-MS Detector Stage

Guard Slits

Focusing Lenses Diagnostics 1 µm Sample Environment Particle Injector Ion TOF-MS Detector Stage

Wavefront Monitor Beam Dump

- Purpose
 - Rough alignment of the experiment without the X-ray beam
 - Provides a visible line to align components
- Requirements
 - Useable with any part of the instrument vented to air
 - Window valves
 - Aligned to the unfocused FEL beam to within 100 microns

CXI 1 µm KB Mirrors

Guard Slits Diagnostics Photon Shutter Attenuators Pulse Picker Focusing Lenses Reference Laser

Guard Slits

Diagnostics

Guard Slits

1 µm KB Mirrors

Diagnostics

Guard Slits

0.1 µm KB Mirrors 0.1 µm Sample Environment Particle Injector Ion TOF-MS

Detector Stage

Guard Slits

Focusing Lenses Diagnostics

1 µm Sample Environment Particle Injector Ion TOF-MS Detector Stage

Wavefront Monitor Beam Dump

- Purpose
 - Produce a 1 µm focus
 - Focal lengths
 - 8.7 m for M1
 - 8.3 m for M2
 - Requirements
 - 350 mm clear aperture
 - 3.4 mrad maximum incidence angle
 - SiC coating
 - <1 nm rms height error over entire mirror</p>

2-11 kel/ energy range

KB focusing also provides harmonic rejection

CXI Sample Chamber

Sébastien Boutet

sboutet@slac.stanford.edu

Photon Shutter

Pulse Picker

Focusing Lenses

Reference Laser

Guard Slits

Diagnostics

Guard Slits

1 µm KB Mirrors

Diagnostics

Guard Slits

0.1 µm KB Mirrors 0.1 µm Sample Environment Particle Injector

Detector Stage

Guard Slits

Focusing Lenses

1 µm Sample Environment **Particle Injector** Ion TOF-MS **Detector Stage**

Wavefront Monitor Beam Dump

Position apertures and samples on grids

- Piezoelectric stages invacuum
 - 3 aperture stages for noise reduction
 - 5-axis sample stage for mounted samples
- **High Vacuum**
 - 10⁻⁷ mbar to minimize noise from air scatter
- Large exit flange for large detector
- Rapid access with large door
- Large volume for flexibility
- On-axis sample viewing
 - Using long-range microscope and mirror with hole
 - 2-3 micron resolution
- Multiple laser ports

CXI Sample Chamber

Front view

Back view

Sample Chamber Interior

Many apertures are needed to measure signal at small angles

LELS CXI Sample Chamber (Internal Views)

Back view

Front view

CXI Detector

Ħ XRT FEH Hutch 5

Guard Slits Diagnostics **Photon Shutter** Attenuators **Pulse Picker** Focusing Lenses **Reference** Laser **Guard Slits** Diagnostics **Guard Slits** 1 µm KB Mirrors Diagnostics **Guard Slits** 0.1 µm KB Mirrors 0.1 µm Sample Environment Particle Injector Ion TOF-MS **Detector Stage Guard Slits Focusing Lenses Diagnostics** 1 µm Sample Environment **Particle Injector** Ion TOF-MS **Detector Stage** Wavefront Monitor

Collaboration with the Gruner Group at Cornell University

- 2D Pixel Array Detector
 - High resistivity Silicon (500 μm) for direct x-ray conversion.
 - Reverse biased for full depletion.
 - Bump-bonding connection to CMOS ASIC.
- <1 photon readout noise
- 110x110 µm² pixels
- 1520x1520 pixels
- 10³ dynamic range
- 120 Hz readout

Tiled detector, permits variable 'hole' size

Beam Dump

LCLS Detector Modules and Quadrant Rafts

Length: 6"

Detector Partially Disassembled

Detector Stage

- Center the detector hole on the direct beam
 - X, Y, Pitch and Yaw control
 - In-air motion of entire chamber
- Position the detector at the appropriate distance from the interaction region
 - Range along the beam : 50-2400 mm
 - Non-continuous
 - 500 mm travel range along the beam inside vacuum

Sample-detector distance flexibility is crucial

CXI Instrument at LCLS MID Workshop, ESRF, October 28 2009

CXI Particle Injector

	particle beam	
•	 Non-synchronous particle arriv Requires highly concentrated 	al with the LCLS beam aerosol samples for high hit rate
•	Sample size range10-1000 nm	
	Particle Inj	ector
nie	ector was designed for	or bio-molecules bu

Deliver support-free single particles to the LCLS beam

Aerodynamic lens technology to transfer aerosols to vacuum in a

was designed for bio-molecules but works for any type of sub-micron samples

Sample Chamber

> Sébastien Boutet sboutet@slac.stanford.edu

CXI Instrument at LCLS MID Workshop, ESRF, October 28 2009

Aerodynamic Focusing

Design is compatible with other technologies (droplet sources, aerojets)

CXI 1 micron Sample Environment

CXI 0.1 µm KB Mirrors/Sample Environment

CXI Instrument at LCLS MID Workshop, ESRF, October 28 2009

- Purpose
 - Produce a ~100 nm focus
 - Focal lengths
 - 0.9 m for M1
 - 0.5 m for M2
- Requirements
 - Identical to 1 micron KB System in every way except for the mirror curvature
- Integrated system with 0.1 micron Sample Chamber due to close proximity
- Separating sample from mirror environment is challenging with short working distances

Summary

- CXI instrument is designed for imaging of any submicron particles at near atomic resolution
- Sample environments are provided
 - Fixed targets
 - Injected samples
 - Plans to add cryo-cooled stage
- X-ray optics can tailor FEL parameters for users
 - 3 focal spot size : 0.1, 1 and 10 microns
 - Unfocused beam is possible
 - Possibility to refocus the beam for serial operation
 - Variable attenuation
 - Single pulse selection with pulse picker
 - Diagnostics on every pulse
- User operations start planned for early 2011
 - Website: <u>http://lcls.slac.stanford.edu/Instruments.aspx</u>

