

The MID instrument

International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009

Thomas Tschentscher

thomas.tschentscher@xfel.eu

HELMHOLTZ

History of the MID instrument

- PCS & CXI proposals
- startup scenario
- SCS and SPB instruments
- X-ray beam parameters
 - SASE 1
 - beam properties
- Some instrumentation issues
 - repetition rate
 - sample damage
 - detectors
 - synergy of techniques
- Charge to this workshop

XFEL Scientific motivation

FELs provide for hard x-ray regime a very high flux of coherent photons

Apply methods for coherent radiation to new systems yet inaccessible
Develop new techniques yet unfeasible

Density distributions and structural properties of nanoscale systems (here CXI of Au nanoparticles)

Non-equilibrium fluctuations following excitation by an optical laser pulse

XFEL Requested for CXI experiments in 2006 (TDR)

Coherent x-ray scattering and lensless imaging in materials science

- 3D nanoscale structural analysis
 - → Nanomaterials
 - → Mesoscale systems
 - → Dynamic processes/fluctuations
 - → Materials properties during processing

3 instruments

- tunable soft x-rays → SCS
- tunable hard x-rays
- very hard spontaneous radiation

Requirements (for hard x-rays)

- focal spot sizes 0.1 1 µm
- tunability (3)8 12 keV
- monochromaticity 10⁻⁴ (1 μm) and 10⁻³ (0.1 μm)
- forward scattering and large angle diffraction

European

FEL Requested for XPCS experiments in 2006 (TDR)

X-ray Photon Correlation Spectroscopy

- Nanoscale dynamics of disordered systems
 - → Glas dynamics
 - → Phonon spectroscopy
 - → Surface properties
 - → Time-resolved magnetic scattering
 - → Non-equilibrium dynamics

2 instruments

- tunable soft x-rays → SCS
- hard x-rays

Requirements (for hard x-rays)

- focal spot sizes 0.1 1 µm
- fixed energy 12 keV (36 keV)
- monochromaticity 10⁻⁴
- forward scattering

XFEL Startup configuration

Source	Instruments	Photon beam line characeristics
SASE 1	SPB, MID	FEL radiation ~12 keV; High coherence; Spont. radiation (3 rd , 5 th harm.)
SASE 2	FDE, HED	FEL radiation 3-12 keV; High time-resolution; Spont. radiation (3 rd , 5 th harm.)
SASE 3	SQS, SCS	FEL radiation 0.4 – 3 keV; High flux
		FEL radiation 0.4 – 3 keV; High resolution

SPB	Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters, and Biomolecules
MID	Materials Imaging & Dynamics
FDE	Femtosecond Diffraction Experiments
HED	High Energy Density Matter

SQS	Small Quantum Systems		
SCS	Soft x-ray Coherent Scattering		

XFEL Instruments for coherent scattering

Hard X-rays \rightarrow 12.4 keV

- MID instrument combines the features of the proposed instruments for XPCS and coherent imaging of nano-structures
 - → high precision diffractometer for sample manipulation and various sample environments
 - → detectors at near (~m) and far (~20m) distances
 - beam delivery: mono (on-request); focusing (100 μm; 1 μm; <100 nm)
- SPB instrument for single particles (gas or injected)

Soft X-rays $\rightarrow \sim 0.4 - 3.1 \text{ keV}$

- SCS instrument has been conceived to serve the requirements by the user community to carry out coherent scattering in the soft X-ray regime (few 100 eV – 2/3 keV)
 - → flexibility for various sample environments required
 - → detector arrangements to be determined
 - → beam delivery: mono (perm.); focussing (??)
 - → variable polarization has high priority in beyond baseline program
- SQS instrument for investigation of non-linear, high-field and time dependent processes in atoms, molecules & clusters

Geometry

- 3 instruments on 15×42 m² real estate inside experiments hall
- 2 will be realized in first step
- source distance ~1000 m

XFEL X-ray beam properties

- **SASE 1** source properties
 - SASE FEL (& spontaneous undulator) radiation
 - horizontal polarization
 - fundament FEL line at 12.4 keV (closed gap configuration)
 - → no smaller photon energies
 - → higher photon energies might be accessible
 - → 3rd and 5th harmonic radiation at 1 and 0.1 % intensity
 - ~10¹² photons or 2 mJ
 - intrinsic (FEL) bandwidth ~0.08%
 - coherence time ~0.2 fs
 - source size 70 µm
 - source divergence 1 µrad
 - pulse duration O(100) fs

Accelerator parameter	Unit	Value
Fundamental wavelength	nm	0.1
Electron energy for 0.1 nm	GeV	17.5
Bunch charge	nCb	1
RF pulse repetition rate	Hz	10
Electron bunch repetition rate during RF pulse	MHz	5
Max. number of electron bunches per RF pulse		3250
Duration of electron bunchtrain	μs	650

MID instrument at the European XFEL

XFEL Temporal x-ray beam properties (SASE 1)

Thomas Tschentscher, European XFEL, Oct 28, 2009

11

XFEL Time pattern of accelerator & photon delivery

Electron bunch delivery

Advantages for user operation

- enables stabilization by intra-bunch feedback
- higher flexibility of operation for simultaneous user experiments
- large number of delivered FEL pulses
 - → Combination of peak & average brilliance

XFEL Repetition rate issues

MID experiments require high peak brilliance (coherence, duration). But what are the needs, requirements and possibly limitations about using higher repetition rates ?

- basic rep. rate 10 Hz
- intra-train rep. rate
 - 100 kHz 1 MHz 5 MHz
 - or
 - $1 \ \mu s 1 \ \mu s 0.2 \ \mu s$
- shorter distances possible
- pulse pattern rather flexible

Instrumentation issues

- x-ray delivery
- sample delivery
- detection (systems)
- optical lasers

XFEL X-ray beam transport

X-ray optics and beam transport has to deliver FEL beam from the source to the instrument while maintaining intensity, duration and wavefront

- steering & distribution
- monochromatization
- focusing
- suppress high energy spontaneous/harmonic radiation

XFEL Radiation protection

Bremsstrahlung incident (beam loss in undulator)

Bremsstrahlung 100 keV ..17.5 GeV

Radiation shielding exp. hall

- Imitations for transport of higher harmonics & spont. radiation
- two-mirror concept provide much better cut-off
- high energies only via mono. ?

SASE 1	one mirror, Pt coating	> 22 mm Pb
	one mirror, C-coating	12-20 mm Pb
	two mirrors, Pt-coating	3-7 mm Pb + 10 mm Fe
	two mirrors, C-coating	10-20 mm Fe

XFEL X-ray photon diagnostics

15

Due to the fluctuating properties of the SASE FEL sources the photon diagnostic methods in general needs to be pulse resolved.

Standard diagnostics

- intensity measurement (absolute, relative, accuracy ?)
- beam position measurement (accuracy ?)

Special diagnostics

- spectral distribution
- temporal properties (distribution, width, arrival)
- polarization
- coherence / wavefronts

Jan Grünert is responsible for the task of x-ray photon diagnostics

XFEL X-ray detector development

Challenges:

- Integration with large dynamic range & 'single photon sensitivity'
- frame readout rates up to 5 MHz

Three 2D detector developments have been started \rightarrow LPD, AGIPD, DSSC. After evaluating the properties of the 3 developments, the AGIPD detector was dedicated to diffraction imaging with the understanding that this detector might also serve photon correlation experiments.

there might be limitations to this, due to varying requirements

Initial R&D showed the linking beween the size of the pixels and the number of storage places.

1D detector development

- simpler in many aspects, but provides less information
- started to collect requirements for definition of specific cases
 - → provide information, best define requirements

E Data acquisition, storage and instrument control

EuropeanSample issues

Due to intense beams the interaction of the x-ray beam with the sample cannot be neglected:

direct beam
 ~10¹⁶ W/cm² (10µm); ~10¹⁸ W/cm² (1µm); ~10²⁰ W/cm² (0.1µm)
monochromatic beam (2% eff.)
 ~2×10¹⁴ W/cm² (10µm); ~2×10¹⁶ W/cm² (1µm); ~2×10¹⁸ W/cm² (0.1µm)
split & delay unit (0.1% eff.)
 ~10¹³ W/cm² (10µm); ~10¹⁵ W/cm² (1µm); ~10¹⁷ W/cm² (0.1µm)
unfocussed beam
 ~2×10¹² W/cm² (full); ~5×10¹⁰ W/cm² (mono.); ~2×10⁹ W/cm² (split&delay)

In addition high rep. rates lead to heat load on the sample.

What are the needs and possibilities for sample exchange ?

XFEL Charge to the workshop

Refine science scope and discuss required instrumentation for MID instruments

- requirements to beam delivery (coherence, wavefronts, focal spots, monochromaticity, split & delay, temporal properties)
- beam delivery (rep. rates, pulse patterns)
- requirements to photon diagnostics
- requirements to instrumentation (sample environment, diffractometer)
- detectors (geometry, 2D, 1D (?), ...)
- optical lasers

Sample issues

sample classes & exchange schemes

MID instrument layout

- overall concept
- short / long detector distances
- forward / large Q scattering

A coarse schedule for the MID instrument

	2010	2011	2012	2013	2014	2015
Undulator (SASE 1)						
Definition						
Construction/Measure.						
Installation						
Photon transport						
Definition						
Construction						
Installation						
Instrument						
Definition						
Construction						
Installation						
First x-ray beam						

Both, diffraction imaging and photon correlation techniques offer new opportunities to investigate nanoscale systems. Hard x-ray FEL radiation offers many of the properties required for such experiments.

The European XFEL project foresees to build the MID instrument for these applications. Requirements for this instrument need to be narrowed down.

•

Early European XFEL experiments are scheduled for 2015. But preparation of the instrument starts now.

•

The European XFEL team is looking forward to working with you over the next years on defining and building this instrument.

