The Materials Imaging and Dynamics station

A. Madsen, European XFEL, Schenefeld, Germany

anders.madsen@xfel.eu

soon....

European XFEL

Early science at the Materials Imaging and Dynamics (MID) instrument

8:30	Welcome	S. Molodtsov	European XFEL
8:45	Introduction to MID	A. Madsen	European XFEL
9:30	Microscopic cryogenic liquid jets as novel tool to study non-equilibrium phase transition at European XFEL	A. Schottelius	University of Frankfurt
10:00	High-Purity X-ray Polarimetry - A Unique Method at MID	K.S. Schulze	University of Jena
10:30	Hard X-ray split-delay line for the MID station	S. Eisebitt	MBI Berlin
11:00	Coffee		
11:20	Equilibrium dynamics of deeply supercooled water probed by ultrafast X-ray Speckle Visibility	F. Perakis	Stockholm University
11:50	X-ray diffuse scattering as a probe of anharmonic phonon-phonon coupling in solids	M. Trigo	Stanford University
12:20	Studies of IR laser induced periodic plasma in colloidal crystals probed by XFEL radiation	S. Lazarev	DESY Hamburg
12:50	Summary & Wrap-up (G. Grübel, DESY)		
13:00-14:00	Lunch		
14:00 -18:30	Proposal discussions and facility tour		
18:30	Buffet dinner		

After lunch: proposal discussions and facility tour

- 2:00 pm (meeting point: XFEL reception)
 - Discussion about early science proposals: DYNAMICS (E1.041)

(presentations by C. Gutt, F. Lehmkuehler,... everyone, whiteboard,...)

- Discussion about early science proposals: IMAGING (E1.096)

(presentations by R. Kurta, C. Kim,... everyone, whiteboard,...)

- Experimental hall visit (?)
- ~3:30 pm Coffee and plenary session with reports from discussions (E1.041)
- ~4:30 pm (meeting point: XFEL reception)
 - Experimental hall visit. Posters with more details about MID (guides: J. Hallmann and A. Zozulya)
- 6:30 pm Buffet dinner in foyer

https://www.xfel.eu/facility/instruments/mid/index eng.html

MID@XFEL.EU

Gabriele Ansaldi Alexander Bartmann **Ulrike Boesenberg** Jörg Hallmann Chan Kim Iker Lobato Wei Lu Anders Madsen Johannes Möller Mario Reiser Andreas Schmidt Markus Scholz Roman Shayduk Konstantin Sukharnikov* Alexey Zozulya * missing on photo

Facility outline

Six phase-1 stations

~3 – 25 keV	Hard X-rays	SPB: § MID: § FXE: § HED:	 Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters, and Biomolecules Structure determination of single particles: protein crystallography, biomolecules, cells Materials Imaging & Dynamics Structure determination of materials and dynamics at the nanoscale. Femtosecond X-ray Experiments Time-resolved investigations of the dynamics of chemical reactions High Energy Density Matter Investigation of matter under extreme conditions, e.g. probing dense plasmas 	the dear get	with buried of transition in a for Themson T, and N, Liser creates planan plane with nacco- det taget
~0.3 – 3 keV	soft X-rays	SQS: SCS:	Small Quantum Systems Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena Soft x-ray Coherent Scattering/Spectroscopy	1E-50 (F) 1E-54 1E-58 1E-58 1E-50 1E-5	Ser .
	0)		systems and of non-reproducible biological objects	3	1.6YA

6

Time structure of European XFEL

MID specifications

- = 5-25 (9?) keV X-rays, focusing with CRLs: down to few μ m, nano-focusing option
- synchronized optical fs laser (not available for EUE)
- pink SASE (bw ~10⁻³), Si(111) or Si(220) mono
- SASE-2 is the undulator where self-seeding will be implemented first (not available for EUE)
- Up to 4.5 MHz i.e. $\Delta t = 220$ ns spacing. Integers n· Δt possible (n=4 tested). 1, 30, 120,... pulses/train tested so far. 10 trains/s
- **0** 800 ps spacing using split-delay line (SDL) (not available for EUE)
- **u** pulse energy ~0.5 mJ = $3x10^{11}$ photons/pulse at 10 keV. Pulse duration <100 fs
- window-less setup (differential pump) or sample in air/He (diamond window)
- 2d detectors (AGIPD, ePix, Jungfrau), attenuators, slits, diagnostics,...
- pulse resolved energy dispersive spectrometer
- liquid jet, cryostat, B-field, fast sample scanner, hexapods, goniometer,...

SASE-2 undulator

SASE-2 undulator >95% installed (35 x 5 m segments) NdFeB magnets, period 40 mm
Jan 2018: Mechanical comm.
Installation of dose monitors and air coil correctors
Ready for beam: March 2018

^{1 st} lasing attempt: April 2018?

The SASE-2 undulator located behind protection panels for better AC control View from segment 27 and downstream (credit: J. Pflueger and XFEL undulator group)

MID beamline overview

Not shown:

MCP at 303m (fine tuning of SASE) Distribution mirror(s) at 390m and 395m (MID on central branch) Beam loss monitors, PES last 25 m in experimental hall

Tunnel responsibles: Optics group, Vacuum group, Photon diagnostics group, MID and HED

European XFEL

	MID focusing						
<u></u>	CRL-1	CRL-2 44)))))))	2 (nanoCRL	Nar	nofocusing optior	า
	CRL-1	931 m		967 959 m	Energy	/ Beam size (FWHI	M)
	installed			З	5 keV	/ 187 n	ım
			CRL-1 collimation		8 keV	/ 117 n	ım
	0000		simple CRL-1 focusing		12 ke\	/ 78 n	ım
					16 ke\	/ 58 n	Im
			combined CRL-1&2 foc	using	25 ke\	/ 37 n	ım
		•	focusing via intermediat	te focus	Ca f=	alculation for = 300 mm	
			collimate, then focus	Beam size on sample ~ 2-1000 μm	Ef wi	ficiency ~50% ith prefocusing	
		0	brute CRL-2 focusing	Eff. >80% for most	~] f=	0 nm focus for	
	Photo: L. Batchelor, X	FEL-CIE		schemes and energies		50 mm at 12 KC V	

Anders Madsen, European XFEL

11

MID tunnel components

- All components are delivered and installed
- Survey of components 60% completed (XTD1 complete, XTD6 ongoing)
- Establishing of complete vacuum system is ongoing (currently about 10% under vacuum)
- All electronic racks are installed on connected, local cabling ongoing (40% complete).
- All safety relevant components (shutters&shieldings) were approved by TÜV.
- Optics: Beam transport mirrors were received and characterized in Metrology lab. Coating is ongoing (B4C +Pt). Optics will be mounted, as soon as overall system (vacuum, controls) allow save operation.
- Major challenges are electronics installations, cabeling, and software development and debugging (Beckhoff and Karabo).
 - First lasing, start of commissioning with beam in tunnel in May

Slide from Harald Sinn XFEL optics group

12

Tunnel diagnostics

all SASE2 diagnostics vacuum systems are in the tunnel

Courtesy of Jan Grünert and the photon diagnostics group

European XFEL

MID hutches

Optics hutch

Alignment system
 Slit, imager, attenuator
 (JJ X-ray, XFEL coordinator: L. Batchelor)
 Monochromator Si(220)
 (XFEL optics group)

Split-Delay Line (S. Eisebitt - W. Lu presentation)

Split-Delay Line prototype tested in MID lab

Polarizer-polarimeter (K. S. Schulze presentation)

Experimental chamber (MPC: Multi Purpose Chamber)

1st stage (hexapod on linear stage) carries e.g. nanoCRL

> 2nd stage (hexapod + Huber stack) rotation, tilts and translations

beam

MPC operates under vacuum, windowless config. Possibility to work without lid (in air or He bag)

Sample environment (posters in Exp. Hall):

- 10 Hz solid sample scanner (C. Deiter, XFEL)
- Pulsed B field (Up to ~15T, 1 ms pulse)
- Liquid jet

. . . .

18

Sample environment

Cryo-jet (presentation by A. Schottelius)

Coil cryostat

James Moore

XFEL sample env. group

Scattering geometry

Detector ~20 cm from sample (large field of view config) or between ~3 – 8 m (SAXS – WAXS)

 2θ up to ~55°

AGIPD detector size: ~ 20 x 20 cm, 200 μ m pixels

The X-ray scattering and imaging setup

FAT at PINK GmbH 18-01-2018 Installation at MID: Feb – Mar

Mechanical integration of 2D detector

AGIPD 8 m from sample

AGIPD ~20 cm from sample

Use of AGIPD "dummy" to test mechanics and motion

AGIPD detector

Al₂O₃ power rings (AGIPD calibration SPB)

MID's AGIPD in the lab (DESY FS-DS)

AGIPD for MID (similar to SPB's AGIPD)

- ~1M pixels, 200 μ m pixel size
- MHz rep rate
- Aim: available for 1st user experiments at MID
- AGIPD patch panel: A. Liebetrau

AGIPD coordinator H. Graafsma (DESY) Slide adapted from Aschkan Allahgholi

Other detectors for MID

	AGIPD 1M	JUNGFRAU 1M	ePix 100 1M	GOTTHARD (-II)
Energy range (keV)	3-25	3-25	3-20	3-25
Dynamic range	10 ⁴ ph/px/pulse @12 keV	10⁴ ph/px/pulse @12 keV	100 ph/px @8 keV	10⁴ ph/px/pulse @12 keV
Pixel size	200 × 200 μm²	75 × 75 μm ²	50 × 50 μm²	50 (25) μm
Noise	~1000eV	~200eV (HG)	<200eV	<750eV
Repetition rate	4.5 MHz	Currently 200kHz	120Hz	800kHz (4.5 MHz)
Number of storage cells	352	16	-	(Compact storage for full pulse train)
In-vacuum	Yes	Yes	Yes	No
(#mod) Array size	(4) 110×110mm² /mod	(2)40×80mm ² /mod	(2)35×38mm ² /mod.	(1) ~6×64mm ² 1280 (2560) pxl

Beam diagnostics at instrument

Towards spectral analysis at MHz rate

energy / eV

25000

Diamond crystal bender C*(220)

Pulse resolved spectra recorded at LCLS (120 Hz)

U. Boesenberg *et al.*, Optics Express **25**, 2852 (2017) T. Roth *et al.*, J. Synchrotron Rad. **25**, 177 (2018)

Non-invasive, MHz rate characterization of intensity and position

Pump-probe fs laser

Instrument laser hutch

Installation progress and plans

Slits, monochromators, attenuators, CRL transfocators, shutters, DPS, mirrors arrived

All parts to build vacuum beamline are in house

MPC + detector arm and support to be installed in Feb-Mar 2018

AGIPD detector to arrive this spring

Cabling in progress; infrastructure and utilities under installation.

Electronics installation in progress. All infrastructure for instrument only ready in June

First lasing April, commissioning beam transport May, instrument commissioning Aug

Jan 2019 is a realistic estimate of first EUE

fs PP laser, SDL, self-seeding,... not available for first EUE

Early science possibilities. Dynamics

Sequential XPCS, must be non-destructive

$$g^{(2)}(t) = \frac{\left\langle I(\tau)I(\tau+t)\right\rangle}{\left\langle I\right\rangle^2}$$
$$= \beta \left| f(Q,t) \right|^2 + 1$$

Autocorrelation at MHz rep rate...

Early science possibilities. Dynamics

Speckle Visibility Spectroscopy

- by: variation of pulse length
- or by summing two pulses (SDL, or machine)

summed image

Contrast can be determined from the probability of 2-photon events P(2):

$$\beta = \frac{2P(2)}{\langle k \rangle^2} - 1$$

XSVS can be with a new sample for every pulse pair

Early science possibilities. Imaging

Unique combination: Nano-beam, small scattering volume, high photon flux ph/s/ μ m²

Angular correlation studies by electron diffraction Lui *et al*, PRL **110**, 205505 (2013) (a) d_p=0.51 nm x y k_x

Detector

Early science possibilities. Imaging

Measuring phonons in Au nanocrystals by **PP CDI at LCLS**

J. Clark et al., Science **341**, 56 (2013)

ns too slow for phonons but OK for certain phase transitions, critical dynamics, surface dynamics,...

Pump-probe CDI or speckle imaging

fs PP-laser will only become available in 2019

If users argue for a ns/ps laser at day 1 (science case?) we could possibly provide one (specs?)

User Access

- Beamtime proposals via User Portal to the European XFEL (UPEX): <u>https://in.xfel.eu/upex</u>
- 2 calls/year, regularly from 2019
- Information for users: <u>https://www.xfel.eu/users</u>; ask staff about instrument details
- One PRP per instrument. Guidelines: scientific merit, novelty, XFEL need, feasibility, safety,...
- Decisions communicated about 3 months after call deadline
- Travel and accommodation covered for up to 6 persons/proposals (member countries)
- XFEL travel office can help organizing the trip
- Construction of canteen and guesthouse on the way (end 2018 2019)
- 3rd call opens soon, deadline end of March
 - EUE could start Jan 2019 at MID

1st experiments at SASE-1, June 23 2018

Requested by Council to show ability to start operation → Council decision to formally start Operation

Karabo control system XFEL CAS group

Experience from 1st experiments at SASE-1

Accelerator – Achieved e-beam parameters

Quantity	Target	Achieved
electron energy	14 GeV	14 GeV
macro pulse repetition rate	10 Hz	10 Hz
RF pulse length (flat top)	600 µs	600 µs
Bunches per second	1- 600	1-3000
bunch repetition frequency within pulse	1.13 Mhz	1.13, 4.5 MHz
bunch charge	0.5 nC	0.1, 0.5 nC
electron bunch length after compression (FWHM)	90 fs	90 fs
Slice emittance	1 mm mrad	0.6 mm mrad ^{\$}
beam power	5 kW	18 kW

Experience from 1st experiments at SASE-1

Start of user experiments: 14 Sept. 2017. Many periods >24h without interruptions is SASE beam delivery

European XFEL

Experience from 1st experiments at SASE-1 Good User Day (30.09.)

We were missing:

 close control of photon wavelength
 Possibility to look for correlation between electron and photon signals.

3rd call for proposals

Parameter	Unit	1 st Call	2 nd Call	3 rd Call	Regular
Photon energy (range)	keV	~ 9	~ 9 (7 – 14)	~ 9 keV	0.26 to >20
Pulse number		1 – 60 (30)	1 – 60 (300)	1 - 300	1 – 2500
Intra-train reprate	MHz	1.1	1.1	1.1/4.5	0.1/1.1/4.5
Pulse energy (at source)	μJ	~ 500	~ 500	~ 500	depends
Bandwidth	%	0.14*	0.2	~ 0.2	~0.18
Pointing stability	µrad	~ 2	2	< 2	0.2
Focus size	μm	2 – 3*	5 - 15	$0.1-20 \ \mu m$	0.2 – 100
Instruments		SPB/SFX, FXE	SPB/SFX, FXE	MID	all

Allocation period: Nov 2018 – June 2019 (tentative)

- Parameters for EUE at MID (3rd call) defined by the commissioning and progress in understanding of the SASE-2 undulator (1st lasing attempt in April 2018?)
- Steady progress of linac towards 17.5 GeV, 4.5 MHz, and 2700 pulses/train

European XFEL

"Community proposals"

Term emerged after 1st call: 3 sfx/spi proposals submitted for SPB had ~100 proposers
 All "community proposals" went through in 1st application round → 100% score
 Compare to overall success rate of 15-20%

Can/will the MID community team up in community proposals like the biologists did?

- Advantages: everybody in from beginning, 100% acceptance and success rate (at SPB), beneficial for MID team to manage conflicts of interest and bridge EUE with commissioning
- Challenge: different way of working together than for SR experiments
- Open process, self-organization could start at this workshop...

Questions ?

40