

PUIsed MAgnetic field (PUMA) project

Karina Kazarian

MID European XFEL

Universität Hamburg

European XFEL

Outline

Pulsed Magnetic field research project

Outline

Pulsed Magnetic field research project

Motivation: Studying the couplings of fundamental degrees of freedom

General PUMA setup characteristics Sample-holders Materials Copper / Saphir (Al_2O_3) for transmission

Liquid helium flow-cryostat for 7K to 300K

Multiple sample-holders available

- Magnetic scattering: θ -2 θ horizontal geometry
- θ -rotation ~ 180 deg, 2 θ detection up to 50 deg
- 4 electrical contacts for resistivity measurements

Miniature coils for pulsed high magnetic field

- Up to 15 T vertical magnetic field pulse of 1 ms duration
- Repetition rate 1 pulse every 5 10 seconds

X-ray out

Scattering geometry

 $2\theta < 90 \text{ deg}$

X-ray in

for reflection

Pulsed high magnetic field coil

In-house made split-pair coil by James Moore (SEC group)

- Temperature sensor and pickup coil right above the sample position
- Liquid nitrogen cooled to dissipate heating during a magnet pulse
- Commercial magnetizing unit 3kV capacitor bank
- Software operation and synchronisation control

European XFEL Temporal Structure for Magnetic Measurements

Magnetic and X-ray pulses synchronization

PUMA trigger timing for discharge strongly connected with X-rays timing and so with AGIPD

- Magnetic pulse length is always constant, independently of power
- Variable PUMA trigger delays to observe sample in different states of dynamical process

Full Pulsed Magnet setup operation

- Magnetic discharge contain one train
- Number of pulses within train with discharge may vary depending on sample damage and signal statistics
 - Track intensity and position of reflection before, during and after magnetic discharge

11

Minimum delay time t is 100 ms, which corresponds to time between trains

European XFEL

Outline

Pulsed Magnetic field research project

PUMA experiments

(a) fundamental Cr (002) reflection
(b) CDW peak (00 2-2σ) of Cr measured by AGIPD

- Samples: Silicon, Chromium, Dysprosium
- X-ray energy 10.5 -11 keV
- AGIPD angle range 20 from 20.7° to 50.45°
- Maximum applied magnetic field ~ 12 Tesla
- Lowest applied temperature ~20K
- Sample detector distance 3 and 7.5 meters

Research of Dy phase diagram using PUMA

FM

(orth

75

Helical antiferromagnetic (AF) structure (c axis) below $T_N = 179$ K in zero magnetic field

Ferromagnetic (F) below $T_c = 89$ K with easy 40 magnetization direction in plane (a axis) Critical Field, H_c (kOe) 8 91 07 75 75 75 75 75

- Strong depends $T_N(H)$
- Both first and second order phase transition
- Interplay between helix and fan antiferromagnetic phases

Time resolved observation of phase transition dynamics

European XFEL

14

Yoshtoshi Kida et al, J. Phys. Soc. Jpn 68 No. 2, 650 (1999) (DOI: 10.1143/JPSJ.68.650) A. S. Chernyshov et al, Phys. Rev. B 71, 184410 (2005) (DOI: 10.1103/PhysRevB.71.184410) A. S. Chernyshov et al, Phys. Rev. B 77, 094132 (2008) (DOI: 10.1103/PhysRevB.77.094132)

Research of Dy phase diagram using PUMA

Research of Dy phase diagram using PUMA

European XFEL

Next magnetic pulse in 20s

⁻ 16

Dependence of Dy(002) reflection parameters on the magnetic field

17

Dependence of Dy(002) reflection parameters on the magnetic field

Fig. 3. The magnetic field dependence of the c lattice parameter obtained by the (006) reflections at the temperature of 130, 150 and 170 K. A solid line at 150 K is the result of fitting (see text).

Yoshtoshi Kida et al, J. Phys. Soc. Jpn 68 No. 2, 650 (1999) (DOI: 10.1143/JPSJ.68.650)

Study of charge and spin density waves dynamics in Cr

Antiferromagnetic below $T_N = 311 \text{ K}$

Spin-flip transverse to longitudinal wave at 122 K

Connection between charge and spin density waves

Magnetic field induced domain structure dynamics

V. L. R. Jacques et al, Phys. Rev. B 89, 245127 (2014) (DOI: 10.1103/PhysRevB.89.245127)
O. G. Shpyrko et al, Nature Vol 447, 68 (2007) (DOI: 10.1038/nature05776)

19

Study of temperature dependence of SDW satellites Cr (001 $\pm\delta$)

Study of temperature dependence of SDW satellites Cr (001 $\pm\delta$)

Software

Christopher Youngman Riccardo Fabbri Robert Schaffer Marijan Stupar Andrea Parenti Bruno Fernandes

Scientific advice

Anders Madsen Gerhard Grübel Cornelius Strohm Vincent Jacques David Le Bolloc'h

Thank you!

Engineering

James Moore Iker Lobato Konstantin Sukharnikov Alexander Bartmann Gabriele Ansaldi Andreas Schmidt

Experiment

Jorg Hallmann **Ulrike Bosenberg** Johannes Moller Roman Schayduk Alexey Zozulya Markus Scholz Angel Rodriguez-Fernandez Felix Brausse Lu Wei Dieter Lott Vasilii Bazhenov Robin Schubert Mark Busch Rainer Behn

