FXE Instrument Parameters for Early User Operation

All parameters are subject to change, pending the commissioning process.

Note in particular that for grey parameters/devices availability has to be cross-checked with the FXE instrument scientists.Please always discuss your experimental plans with an FXE instrument scientist before submitting your proposal.They can help you with any details that may have been updated, assist with evaluating the experiment feasibility, and much more.Contacts:<u>sample.environment@xfel.eu</u>useroffice@xfel.eu

Photon Beam Parameters (*see also "beam parameters" for this run*)							
Photon energy	6-18 (5-10) keV	potentially changeable					
Pulse energy	1 mJ	measured, (0.35 mJ calculated, at saturation)					
Electron bunch charge	0.25 nC						
Photons per pulse	3.6 × 10 ¹¹	calculated for 0.5 nC at 8.979 keV					
Pulse duration	25 fs	calculated from e- beam properties (50 fs at 0.25 nC)					
Spot size on sample	~ 15 µm (focus)	calculated (2 μ m), variable up to ~100 μ m					
Photons/µm ² on sample	<i>ca</i> . 10 ¹⁰	derived					
Train repetition rate	10 Hz	fixed					
Intra-train repetition rate	1.1 MHz	possibly changeable to 4.5 or 0.1 MHz					
No. of bunches per train	200	possibly variable between 1 and 200					
Pointing stability	2 µrad	possibly drifting over entrance apertures					
$\Delta E/E$	< 0.2%	calculated					
Primary Si(111) 4- bounce monochromator		Calculated, currently under commissioning					

XES: von Hamos Spectrometer

Crystal bending radius500 mmTotal number of tiles $16 (30 \times 110 \text{ mm}^2)$ Angular range (1 crystal) $\sim 2.8^{\circ} (\theta = 80^{\circ})$ $\sim 1.15^{\circ} (\theta = 60^{\circ})$

Available Crystals and Energy Coverage in 60° – 90° Geometry

Energy range convered by the crystals available at FXE													
Ti Ka	V Ka	Cr Ka	Mn Ka	Fe Ka	Со Ка	Ni Ka	Cu Ka	Zn Ka	Ir La	Pt La	Au La Hg La	Se Ka	Br Ka
				<i>Μn Kβ</i>	Fe Kβ	Со Кβ	Νί Κβ	Cu Kβ					

Beam and Timing Diagnostics

(Technical Design <u>http://www.xfel.eu/research/instruments/fxe</u>)

Spectrum analyzer	Spectral fingerprint of beam using crystal diffraction
Post-sample diagnostics bench	Beam position, intensity, spectrum
Timing tool	RF synchronization: ~ 300 fs (measured); Optical synchronization: ~ 50 fs (measured)

Sample Delivery System

Liquid flat-sheet jet/ Cylindrical jet	100 μm, 300 μm/ 50-300 μm	fixed, for wide range of viscosities
Pumping of liquids	Up to 60 m/s	HPLC, micro gear pumps
Swivel/translation sample stack		more details at http://www.xfel.eu/research/instruments/fxe

XES: Johann Spectrometer

Under commissioning. Check status with FXE staff.

Detectors and online data analysis

	GreatEyes (2D)	Jungfrau (2D)	Photon III	GOTTHARD (1D)	Scattering: Large	Scattering: Large Pixel Detector (LPD) Parameters		
Technique	XES	XES & SAXS		XES	No. of pixels	1024 × 1024 4 quadrants, each 512 × 512 pixels		
Energy range	0.5-10 keV	5-30 keV	5-30 keV	3.5-15 keV	Pixel size	$500 \times 500 \mathrm{um^2}$		

Detector efficiency	~ 90% (5 keV), > 25% (10 keV)	90% (5 – 10 keV), > 50% (15 keV)	95% @25keV	90% (5 – 10 keV), > 50% (15 keV)
Detector frame rate	10 Hz	10 Hz	10 Hz	40 kHz – 0.8 MHz
No. of pixels (pixel size)	1024 × 256 (26 × 26 μm²)	1024 x 1024 (75 × 75 μm²)	1536 × 1024 (135 × 135 μm²)	1280 × 1 (50 μm × 8 mm)
Pixel dynamic range	~ 350 at 7 keV	10 ⁴ at 12 keV	10 ⁴ at 18 keV	10 ⁴ at 12 keV

Online data inspection capabilities:

X-ray Emission: Online visualization of pump-probe difference spectra from Jungfrau data (10 Hz intertrain currently) X-ray Scattering on LPD: Online azimuthal integration of one train (up to 64 pulses) every 2 sec. and visualization of pump-probe differences (intratrain)

All techniques: Online visualization of pump-probe intensity differences from ROIs of one train (accumulate up to 64 bunches) every 0.5 sec on LPD, 10 Hz on Jungfrau

Optical Laser Systems Parameters

Sensor Si, 500 µm	
Max. frame rate 4.5 MHz	
Memory depth 510 images	per pulse train (with vetoing capability)
Sample-detector distance 80 – 1500 mm	on motorized stage
Central hole diameter 10 mm	Q _{min} (9 keV, 100 mm distance) = 0.32 1/Å
Max. Q range at 9 keV ~ 5.1 1/Å	at edge of detector for hole-centred beam (100 mm)
Max. Q range at 14 keV ~ 7.9 1/Å	at edge of detector for hole-centred beam (100 mm)
Dynamic range 10 ⁵ at 9 keV	
Quantum efficiency 98% at 9 keV	89% at 12 keV, 38% at 20 keV

Three synchronised femtosecond to picosecond laser systems will be available. All laser pulses can be time delayed with respect to the X-ray pulse over a range of 4.6 ns in steps of 2.5 fs. Optical parametric amplification, white light generation schemes, laser system II and THz pulses are available upon request. In these cases, feasibility needs to be discussed with instrument staff prior to submission.

	pump-probe laser system l		pump-probe laser sys	stem II	pump-probe laser system "Tangerine"		
wavelength	800 nm		1030 nm		1030 nm		
pulse duration	15, 50 fs		0.8 – 500 ps		350 fs		
train repetition rate	10 Hz		10 Hz		N/A	no burst mode operation; quasi cw	
intra-train repetition rate	1.1 MHz (4.5 MHz)	Stepwise variable, down to 100 kHz	4.5 MHz	Stepwise variable, down to 100 kHz	4.5 MHz	variable, down to 100 kHz	
wavelength conversion	SHG, THG	OPA	SHG, THG, FHG, THz		SHG, THG, FHG		
pulse energy (fundamental)	200 µJ at 1.1 MHz	up to 1 mJ at 100 kHz	1 mJ at 4.5 MHz	up to 40 mJ at 100 kHz	5 µJ		
efficiency of 2 nd harmonic gen	12% / 24%	@ 15fs input / @ 55fs input	t.b.d.		∼ 40% at 400 kHz		
efficiency of 3 rd harmonic gen	t.b.d.		t.b.d.		~ 10% at 400 kHz		
efficiency of 4 th harmonic gen	N/A		t.b.d.		∼ 5% at 400 kHz		
arrival time jitter w.r.t. X-rays	350 fs fwhm (RF synchronization; 75 fs (optical synchronization)	measured	t.b.d.		t.b.d.		

Christian Bressler, christian.bressler@xfel.eu, +40 40 8998 1909 (phone), +49 40 8994 1909 (fax) European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany, **www.xfel.eu**

May 10, 2019 Parameters may change at any time

