FXE Instrument Parameters for Early User Operation

All parameter are subject to change, pending the commissioning process. Note in particular that for grey parameters/devices availability has to be cross-checked with the FXE instrument scientists Please discuss your experiment plans with an FXE instrument scientist before submitting your proposal.

They can help you with any details that may have been updated, assist with evaluating the experiment feasibility, and much more. sample.environment@xfel.eu

Contacts: fxe@xfel.eu

Photon Beam Parameters

Photon energy	6-14 (5-10) keV	potentially changeable		
Pulse energy	1 mJ	measured, (0.35 mJ calculated, at saturation)		
Electron bunch charge	0.25 nC			
Photons per pulse	3.6 × 10 ¹¹	calculated for 0.5 nC at 8.979 keV		
Pulse duration	25 fs	calculated from e- beam properties (50 fs at 0.25 nC		
Spot size on sample	~ 15 µm (focus)	calculated (2 μm), variable up to ~100 μm		
Photons/µm ² on sample	ca. 10 ¹⁰	derived		
Train repetition rate	10 Hz	fixed		
Intra-train repetition rate	1.1 MHz	possibly changeable to 4.5 or 0.1 MHz		
No. of bunches per train	300	possibly variable between 1 and 300		
Pointing stability	2 µrad	possibly drifting over entrance apertures		
Δ <i>E/E</i>	< 0.2%	calculated		
Primary 4-bounce monochromator	∆ <i>E/E</i> = 10 ⁻⁵			

Beam and Timing Diagnostics

(Technical Design <u>http://www.xtel.eu/research/instruments/fxe</u>)				
Post-sample diagnostics bench	Beam position, intensity, spectrum			
Timing tool	~ 20-40 fs (calculated), temporal, spatial, interferrometric			

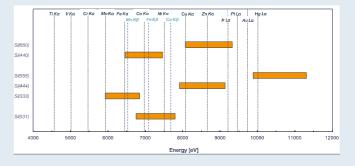
Sample Delivery System

Liquid flat-sheet jet/ Cylindrical jet	100 μm, 300 μm/ 20-200 μm	fixed, for wide range of viscosities
Swivel/translation sample stack		more details at http://www.xfel.eu/research/instruments/fxe

Scattering: Large Pixel Detector (LPD) Parameters

No. of pixels	1024 × 1024	4 quadrants, each 512 x 512 pixels
Pixel size	500 × 500 µm²	
Sensor	Si, 500 µm	
Max. frame rate	4.5 MHz	
Memory depth	510 images	per pulse train (with vetoing capability)
Sample-detector distance	80 – 1500 mm	on motorized stage
Central hole diameter	10 mm	$Q_{min}(9 \text{ keV}, 100 \text{ mm distance}) = 0.32 \text{ 1/Å}$
Max. Q range at 9 keV	~ 5.1 1/Å	at edge of detector for hole-centred beam (100 mm)
Max. Q range at 14 keV	~ 7.9 1/Å	at edge of detector for hole-centred beam (100 mm)
Dynamic range	10 ⁵ at 9 keV	
Quantum efficiency	98% at 9 keV	89% at 12 keV, 38% at 20 keV

XES: von Hamos Spectrometer


Crystal bending radius	500 mm	
Total number of tiles	16 (30 × 110 mm ²)	
Angular range (1 crystal)	~ 2.8° ($\theta = 80^{\circ}$)	~ 1.15° (<i>θ</i> = 60°)

Detectors

useroffice@xfel.eu

	"GreatEyes" (2D)	GOTTHARD (1D)
Detector efficiency	~ 90% (5 keV), > 25% (10 keV)	> 90% (5 - 10 keV), > 50% (15 keV)
Detector frame rate	10 Hz	40 kHz – 0.8 MHz
No. of pixels (pixel size)	1024 × 256 (26 × 26 µm ²)	1280 × 1 (50 µm × 8 mm)
Pixel dynamic range	~ 350 at 7 keV	10 ⁴ at 12 keV

Available Crystals and Energy Coverage in 60° – 90° Geometry

XES: Johann Spectrometer

Crystal radius of curvature	1 m	2 m will be available in the future
Total number of crystals	up to 5	10 cm diameter
Detector and characteristics	APD, PIN diode	MHz readout possible
	GOTTHARD	see above
Available crystals	5 × Si(220)	

Optical Laser Systems Parameters

Three synchronised femtosecond to picosecond laser systems will be available. All laser pulses can be time delayed with respect to the X-ray pulse over a range of 4.6 ns in steps of 2.5 fs. Optical parametric amplification, white light generation schemes and laser system II should become available after the early user experiments. In addition, CEPstable single-cycle terahertz pulses can be generated using optical rectification, with a centre frequency of 0.3 THz (1 mm wavelength) and ~50 µJ pulse energy at 100 kHz repetition rate will be available in the near future.

	pump-probe laser system I		pump-probe laser system II		pump-probe laser system "Tangerine"	
wavelength	800 nm		1030 nm		1030 nm	
pulse duration	15 – 300 fs		0.8 – 500 ps		350 fs	
train repetition rate	10 Hz		10 Hz		N/A	no burst mode operation; quasi cw
intra-train repetition rate	1.1 MHz	variable, down to 100 kHz	4.5 MHz	variable, down to 100 kHz	4.5 MHz	variable, down to 100 kHz
wavelength conversion	SHG, THG	no OPA in Run 1	SHG, THG, THz	no OPA in Run 1	SHG, THG, FHG	no OPA in Run 3
pulse energy (fundamental)	160 µJ at 1.1 MHz	up to 1 mJ at 100 kHz	1 mJ at 4.5 MHz	up to 40 mJ at 100 kHz	5 µJ	
efficiency of 2 nd harmonic gen	t.b.d.		t.b.d.		~ 40% at 400 kHz	
efficiency of 3rd harmonic gen	t.b.d.		t.b.d.		~ 10% at 400 kHz	
efficiency of 4th harmonic gen	N/A		N/A		~ 5% at 400 kHz	
arrival time jitter w.r.t. X-rays	100 fs	estimated	t.b.d.		t.b.d.	

Christian Bressler, christian.bressler@xfel.eu, +40 40 8998 1909 (phone), +49 40 8994 1909 (fax) European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany, www.xfel.eu

Parameters may change at any time

